Можно услышать дискретный прямоугольный тор | |
Медных А. Д.1, Медных И. А.2, Соколова Г. К.3 | |
1.1{Институт математики им. С.Л.Соболева, Новосибирск, Россия | |
Дата поступления 2024.12.14 | Аннотация. В работе показано, что два дискретных прямоугольных тора изоспектральны тогда и только тогда, когда они изоморфны. |
Ключевые слова матрица Лапласа, дискретный тор, изоспектральные многообразия, изоспектральные граф | |
Библиография \bibitem{Milnor64} \textit{Milnor~J.} Eigenvalues of the Laplace operator on certain manifolds~// Proc. Nat. Acad. Sci. U.S.A. --~1964. --~Vol.~54. --~P.~542. --~MR162204v. --~DOI:~10.1073/pnas.51.4.542. \bibitem{Kac} \textit{Kac~M.} Can one hear the shape of a drum?~// Amer. Math. Monthly. --~1966. --~Vol.~73, No.~4.--~P.~1--23. --~MR201237. --~DOI:~10.2307/2313748. \bibitem{Wolpert} \textit{Wolpert~S.} The length spectra as moduli for compact Riemann surfaces~// Ann. Math. --~1979. --~Vol.~109, No.~2. --~P.~323--351. --~MR0528966. --~DOI:~10.2307/1971114. \bibitem{Buser86} \textit{Buser~P.} Isospectral Riemann surfaces~// Ann. Inst. Fourier. --~1986. --~Vol.~36. --~P.~167--192. --~MR0850750. --~URL: http://eudml.org/doc/74711. \bibitem{BrooksTse87} \textit{Brooks~R, Tse~R.} Isospectral surfaces of small genus~// Nagoya Math. --~J. 1990. --~Vol.~107. --~P.~13-24. --~MR0909246; Corrigendum: Brooks~R., Tse~R., Nagoya Math. J. --~1990. --~Vol.~117. --~P.~227. --~MR1044942. --~DOI:~10.1017/S0027763000002518. \bibitem{BardKang} \textit{Barden~D, Kang~H.} Isospectral surfaces of genus two and three~// Math. Proc. Camb. Phil. Soc. --~2012. --~Vol.~153, No.~1. --~P.~99-110. --~MR2943668. --~DOI:~10.1017/S0305004112000126. \bibitem{Brooks88} \textit{Brooks~R.} Constructing isospectral manifolds~// Amer. Math. Monthly. --~1988. --~Vol.~95, No.~9. --~P.~823--839. --~MR0967343. --~DOI:~10.1080/00029890.1988.11972094. \bibitem{Isang2000} \textit{Isangulov~R.R.} Isospectral flat Klein bottles (Russian)~// Mat. Zamet. YAGU. --~2000. --~Vol.~7, No.~2. --~P.~39--48. --~Zbl 0983.58016. \bibitem{Kneser} \textit{Kneser~M.} Lineare Relationen zwischen Darstellungsanzahlen quadratischer Formen~// Math. Ann. --~1967. --~Vol.~168. --~P.~31--39. --~MR205943. --~DOI:~10.1007/BF01361543. \bibitem{Kitaoka} \textit{Kitaoka~Y.} Positive definite quadratic forms with the same representation numbers~// Arch. Math. (Basel). --~1977. --~Vol.~28, No.~5. --~P.~495--497. --~MR441864. --~DOI:~10.1007/BF01223956. \bibitem{ConwaySloan} \textit{Conway~J.H., Sloane~N.J.A.} Four-dimensional lattices with the same theta series~// Internat. Math. Res. Notices. --~1992. --~Vol.~4. --~P.~93--96. --~MR1159450. --~DOI:~10.1155/S1073792892000102. \bibitem{Schiemann} \textit{Schiemann~A.} Ein Beispiel positiv definiter quadratischer Formen der Dimension $4$ mit gleichen Darstellungszahlen (German)~// Arch. Math. (Basel). --~1990. --~Vol.~54, --~No.~4. --~P.~372--375. --~MR1042130. --~DOI:~10.1007/BF01189584. \bibitem{Shiota} \textit{Shiota~K.-i.} On theta series and the splitting of $S_2(\Gamma_0(q))$~// J. Math. Kyoto Univ. --~1991. --~Vol.~31, No.~4. --~P.~909--930. --~MR1141077. --~DOI:~10.1215/kjm/1250519669. \bibitem{EarnNipp} \textit{Earnest~A. G., Nipp~G.} On the theta series of positive quaternary quadratic forms~// C. R. Math. Rep. Acad. Sci. Canada. --~1991. --~Vol.~13, No.~1. --~P.~33--38. --~MR1097501. %\href{https://mathreports.ca/article/on-the-theta-series-of-positive-quaternary-quadratic-forms/} \bibitem{DamHaemers} \textit{van Dam~E. R., Haemers~W. H.} Which graphs are determined by their spectrum?~// Linear Algebra and its Applications. --~2003. --~Vol.~373. --~P.~241--272. --~MR2022290. --~DOI:~10.1016/S0024-3795(03)00483-X. \bibitem{Buser92} \textit{Buser~P.} Geometry and spectra of compact Riemann surfaces. --~Birkh\"auser, Boston, MA~: Progress in Mathematics, 1992. --~Zbl 1239.32001. --~DOI:~10.1007/978-0-8176-4992-0. \bibitem{MedMedTheta} \textit{Mednykh~A., Mednykh~I.} Isospectral genus two graphs are isomorphic~// Ars Math. Contemp. --~2015. --~Vol.~10, No.~2. --~P.~223--235. --~MR3529288. --~DOI:~10.26493/1855-3974.550.e1a. \bibitem{LiuLu} \textit{Liu Xiaogang, Lu Pengli.} Laplacian spectral characterization of dumbbell graphs and theta graphs~// Discrete Math. Algorithms Appl. --~2016. --~Vol.~8, No.~2. --~1650028 (10 pages). --~MR3505475. --~DOI:~10.1142/S1793830916500282. \bibitem{NilRowRyd} \textit{Nilsson~E., Rowlett~J., Rydell~F.} The isospectral problem for flat tori from three perspectives~// Bull. Amer. Math. Soc. (New Series). --~2023. --~Vol.~60, No.~1. --~P.~39--83. --~MR4520776. --~DOI:~10.1090/bull/1770. \bibitem{Sabidu} \textit{Sabidussi~G. }Graph multiplication~// Math. Z. --~1960. --~Vol.~72. --~P.~446--457. --~MR0209177. --~DOI:~10.1007/BF01162967. \bibitem{Vizing} \textit{Vizing~V. G.} The Cartesian product of graphs (Russian)~// Vychisl. Sistemy. --~1963. --~Vol.~9. --~P.~30--43. --~MR0209178. English translation in Comp. El. Syst. --~1966. --~Vol.~2. --~P.~352--365. %\href{https://www.semanticscholar.org/paper/The-cartesian-product-of-graphs-Vizing/1af5fa6fd4cdb43baf9203d85015cae5eef2e5ea} \bibitem{ImriKlav} \textit{Imrich~W., Klavzar~S.} Product graph. --~Wiley-Interscience, New York~: Wiley-Interscience Series in Discrete Mathematics and Optimization, 2000. %\href{https://www.amazon.com/Product-Graphs-Recognition-Wilfried-Imrich/dp/0471370398} \bibitem{Mohar91} \textit{Mohar~B.} The Laplacian spectrum of graphs // Graph theory, combinatorics, and applications / ed. Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Schwenk. --~1991. --~Vol.~2. --~P.~871--898. --~MR1170831. %\href{https://www.amazon.com/Graph-Theory-Combinatorics-Applications-Yousef/dp/0471532452} \bibitem{Fiedler} \textit{Fiedler~M.} Algebraic connectivity of graphs~// Czech. Math. J. --~1973. --~Vol.~23, No.~2.--~P.~298--305. --~MR0318007. %\href{https://eudml.org/doc/12723} \bibitem{Godsil} \textit{Godsil~C.D., Holton~D.A., McKay~B.} The Spectrum of a Graph // Dold~A., Eckmann~B., Little~C.H.C. (eds.) Lect. Notes. Math. --~Vol.~622. --~Springer, Berlin, Heidelberg, 1977. --~MR0544356. --~DOI:~10.1007/BFb0069184. \bibitem{Louis} \textit{Louis~J.} Asymptotics for the determinant of the combinatorial Laplacian on hypercubic lattices~// European J. Comb. --~2017. --~Vol.~63. --~P.~176--196. --~MR3645793. --~DOI:~10.1016/j.ejc.2017.03.003. \bibitem{LinWanZhang} \textit{Lin~Y., Wan~S., Zhang~H.} Connection Laplacian on discrete tori with converging property. arXiv preprint arXiv:2403.06105, 2024 - arxiv.org, https://arxiv.org/abs/2403.06105. \bibitem{Friedli} \textit{Friedli~F.} The bundle Laplacian on discrete tori~// Ann. Inst. Henri Poincar\'e, Comb. Phys. Interact. --~2019. --~Vol.~6, No.~1. --~P.~97--121. --~MR3911691. --~DOI:~10.4171/AIHPD/66. | |
Сведения о финансировании и благодарности The work is done in the framework by the State Contract of the Sobolev Institute of Mathematics (project no. FWNF--2022--0005). |
One can hear a discrete rectangular torus | |
Mednykh A. D.1, Mednykh I. A.2, Sokolova G. K.3 | |
1.1Sobolev Institute of Mathematics, Novosibirsk, Russia | |
Received 2024.12.14 | Abstract. In the present paper, we prove that two discrete rectangular tori are isospectral if and only if they are isomorphic. |
Keywords Laplacian matrix, discrete torus, isospectral manifolds, isospectral graphs | |
References \bibitem{Milnor64} \textit{Milnor~J.} Eigenvalues of the Laplace operator on certain manifolds~// Proc. Nat. Acad. Sci. U.S.A. --~1964. --~Vol.~54. --~P.~542. --~MR162204v. --~DOI:~10.1073/pnas.51.4.542. \bibitem{Kac} \textit{Kac~M.} Can one hear the shape of a drum?~// Amer. Math. Monthly. --~1966. --~Vol.~73, No.~4.--~P.~1--23. --~MR201237. --~DOI:~10.2307/2313748. \bibitem{Wolpert} \textit{Wolpert~S.} The length spectra as moduli for compact Riemann surfaces~// Ann. Math. --~1979. --~Vol.~109, No.~2. --~P.~323--351. --~MR0528966. --~DOI:~10.2307/1971114. \bibitem{Buser86} \textit{Buser~P.} Isospectral Riemann surfaces~// Ann. Inst. Fourier. --~1986. --~Vol.~36. --~P.~167--192. --~MR0850750. --~URL: http://eudml.org/doc/74711. \bibitem{BrooksTse87} \textit{Brooks~R, Tse~R.} Isospectral surfaces of small genus~// Nagoya Math. --~J. 1990. --~Vol.~107. --~P.~13-24. --~MR0909246; Corrigendum: Brooks~R., Tse~R., Nagoya Math. J. --~1990. --~Vol.~117. --~P.~227. --~MR1044942. --~DOI:~10.1017/S0027763000002518. \bibitem{BardKang} \textit{Barden~D, Kang~H.} Isospectral surfaces of genus two and three~// Math. Proc. Camb. Phil. Soc. --~2012. --~Vol.~153, No.~1. --~P.~99-110. --~MR2943668. --~DOI:~10.1017/S0305004112000126. \bibitem{Brooks88} \textit{Brooks~R.} Constructing isospectral manifolds~// Amer. Math. Monthly. --~1988. --~Vol.~95, No.~9. --~P.~823--839. --~MR0967343. --~DOI:~10.1080/00029890.1988.11972094. \bibitem{Isang2000} \textit{Isangulov~R.R.} Isospectral flat Klein bottles (Russian)~// Mat. Zamet. YAGU. --~2000. --~Vol.~7, No.~2. --~P.~39--48. --~Zbl 0983.58016. \bibitem{Kneser} \textit{Kneser~M.} Lineare Relationen zwischen Darstellungsanzahlen quadratischer Formen~// Math. Ann. --~1967. --~Vol.~168. --~P.~31--39. --~MR205943. --~DOI:~10.1007/BF01361543. \bibitem{Kitaoka} \textit{Kitaoka~Y.} Positive definite quadratic forms with the same representation numbers~// Arch. Math. (Basel). --~1977. --~Vol.~28, No.~5. --~P.~495--497. --~MR441864. --~DOI:~10.1007/BF01223956. \bibitem{ConwaySloan} \textit{Conway~J.H., Sloane~N.J.A.} Four-dimensional lattices with the same theta series~// Internat. Math. Res. Notices. --~1992. --~Vol.~4. --~P.~93--96. --~MR1159450. --~DOI:~10.1155/S1073792892000102. \bibitem{Schiemann} \textit{Schiemann~A.} Ein Beispiel positiv definiter quadratischer Formen der Dimension $4$ mit gleichen Darstellungszahlen (German)~// Arch. Math. (Basel). --~1990. --~Vol.~54, --~No.~4. --~P.~372--375. --~MR1042130. --~DOI:~10.1007/BF01189584. \bibitem{Shiota} \textit{Shiota~K.-i.} On theta series and the splitting of $S_2(\Gamma_0(q))$~// J. Math. Kyoto Univ. --~1991. --~Vol.~31, No.~4. --~P.~909--930. --~MR1141077. --~DOI:~10.1215/kjm/1250519669. \bibitem{EarnNipp} \textit{Earnest~A. G., Nipp~G.} On the theta series of positive quaternary quadratic forms~// C. R. Math. Rep. Acad. Sci. Canada. --~1991. --~Vol.~13, No.~1. --~P.~33--38. --~MR1097501. %\href{https://mathreports.ca/article/on-the-theta-series-of-positive-quaternary-quadratic-forms/} \bibitem{DamHaemers} \textit{van Dam~E. R., Haemers~W. H.} Which graphs are determined by their spectrum?~// Linear Algebra and its Applications. --~2003. --~Vol.~373. --~P.~241--272. --~MR2022290. --~DOI:~10.1016/S0024-3795(03)00483-X. \bibitem{Buser92} \textit{Buser~P.} Geometry and spectra of compact Riemann surfaces. --~Birkh\"auser, Boston, MA~: Progress in Mathematics, 1992. --~Zbl 1239.32001. --~DOI:~10.1007/978-0-8176-4992-0. \bibitem{MedMedTheta} \textit{Mednykh~A., Mednykh~I.} Isospectral genus two graphs are isomorphic~// Ars Math. Contemp. --~2015. --~Vol.~10, No.~2. --~P.~223--235. --~MR3529288. --~DOI:~10.26493/1855-3974.550.e1a. \bibitem{LiuLu} \textit{Liu Xiaogang, Lu Pengli.} Laplacian spectral characterization of dumbbell graphs and theta graphs~// Discrete Math. Algorithms Appl. --~2016. --~Vol.~8, No.~2. --~1650028 (10 pages). --~MR3505475. --~DOI:~10.1142/S1793830916500282. \bibitem{NilRowRyd} \textit{Nilsson~E., Rowlett~J., Rydell~F.} The isospectral problem for flat tori from three perspectives~// Bull. Amer. Math. Soc. (New Series). --~2023. --~Vol.~60, No.~1. --~P.~39--83. --~MR4520776. --~DOI:~10.1090/bull/1770. \bibitem{Sabidu} \textit{Sabidussi~G. }Graph multiplication~// Math. Z. --~1960. --~Vol.~72. --~P.~446--457. --~MR0209177. --~DOI:~10.1007/BF01162967. \bibitem{Vizing} \textit{Vizing~V. G.} The Cartesian product of graphs (Russian)~// Vychisl. Sistemy. --~1963. --~Vol.~9. --~P.~30--43. --~MR0209178. English translation in Comp. El. Syst. --~1966. --~Vol.~2. --~P.~352--365. %\href{https://www.semanticscholar.org/paper/The-cartesian-product-of-graphs-Vizing/1af5fa6fd4cdb43baf9203d85015cae5eef2e5ea} \bibitem{ImriKlav} \textit{Imrich~W., Klavzar~S.} Product graph. --~Wiley-Interscience, New York~: Wiley-Interscience Series in Discrete Mathematics and Optimization, 2000. %\href{https://www.amazon.com/Product-Graphs-Recognition-Wilfried-Imrich/dp/0471370398} \bibitem{Mohar91} \textit{Mohar~B.} The Laplacian spectrum of graphs // Graph theory, combinatorics, and applications / ed. Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Schwenk. --~1991. --~Vol.~2. --~P.~871--898. --~MR1170831. %\href{https://www.amazon.com/Graph-Theory-Combinatorics-Applications-Yousef/dp/0471532452} \bibitem{Fiedler} \textit{Fiedler~M.} Algebraic connectivity of graphs~// Czech. Math. J. --~1973. --~Vol.~23, No.~2.--~P.~298--305. --~MR0318007. %\href{https://eudml.org/doc/12723} \bibitem{Godsil} \textit{Godsil~C.D., Holton~D.A., McKay~B.} The Spectrum of a Graph // Dold~A., Eckmann~B., Little~C.H.C. (eds.) Lect. Notes. Math. --~Vol.~622. --~Springer, Berlin, Heidelberg, 1977. --~MR0544356. --~DOI:~10.1007/BFb0069184. \bibitem{Louis} \textit{Louis~J.} Asymptotics for the determinant of the combinatorial Laplacian on hypercubic lattices~// European J. Comb. --~2017. --~Vol.~63. --~P.~176--196. --~MR3645793. --~DOI:~10.1016/j.ejc.2017.03.003. \bibitem{LinWanZhang} \textit{Lin~Y., Wan~S., Zhang~H.} Connection Laplacian on discrete tori with converging property. arXiv preprint arXiv:2403.06105, 2024 - arxiv.org, https://arxiv.org/abs/2403.06105. \bibitem{Friedli} \textit{Friedli~F.} The bundle Laplacian on discrete tori~// Ann. Inst. Henri Poincar\'e, Comb. Phys. Interact. --~2019. --~Vol.~6, No.~1. --~P.~97--121. --~MR3911691. --~DOI:~10.4171/AIHPD/66. | |
Acknowledgements The work is done in the framework by the State Contract of the Sobolev Institute of Mathematics (project no. FWNF--2022--0005). |
Сведения об авторах Медных А. Д. 1.1 Медных И. А. Соколова Г. К. |
About the authors Mednykh A. D. 1.1 Mednykh I. A. Sokolova G. K. |