Скачать PDF
Тождества пространств линейных преобразований и неассоциативных линейных алгебр
Кислицын А. В.1
1.1Омский государственный университет им. Ф. М. Достоевского,(Omsk);
Дата поступления
2024.10.14
Аннотация. В работе представлены основные результаты о мультипликативных векторных пространствах, тождествах мультипликативных векторных пространств и $L$-многообразиях. Также приведены следствия полученных результатов для неассоциативных линейных алгебр
Ключевые слова
мультипликативное векторное пространство, тождество мультипликативного векторного пространства, базис тождеств, конечно базируемое пространство, не конечно базируемое пространство, $L$-многообразие, существенно бесконечно базируемое многообразие, сильно б

Библиография
\bibitem{kislitsin-10} Kislitsin~A.V. On identities of spaces of linear transformations over infinite field~// The News of Altai State University. 2010. No.\,1/2\,(65). Pp.~37--41. (In Russian). \bibitem{lvov-78} L'vov~I.V. Finite-dimensional algebras with infinite bases of identities~// Siberian Mathematical Journal. 1978. Vol.\,19, no.\,1. Pp.~63--69. \bibitem{razmyslov-73} Razmyslov~Yu.P. The existence of a finite basis for the identities of the matrix algebra of order two over a field of characteristic zero~// Algebra Logika. Vol.\,12, no.\,1. Pp.~83--113. \bibitem{specht-50} Specht~W. Gesetze in Ringen, I~// Mathematische Zeitschrift. 1950. Vol.~52, no.\,5. Pp.~557--589. \bibitem{kemer-87} Kemer~A.R. Finite basis property of identities of associative algebras~// Algebra i Logika. 1987. Vol.\,26, no.\,5. Pp.~362--397. \bibitem{belov-10} Belov~A.Ya. Local finite basis property and local representability of varieties of associative rings~// Izvestiya: Mathematics. 2010. Vol.\,74, no.\,1. Pp.~1--126. \bibitem{lyndon-54} Lyndon~R.C. Identities in finite algebras~// Proceedings of the American Mathematical Society. 1954. Vol.\,5, no.\,1. Pp.~8--9. \bibitem{perkins-69} Perkins~P. Bases of equational theories of semigroups~// Journal~of Algebra. 1969. Vol.\,11, no.\,2. Pp.~293--314. \bibitem{polin-76} Polin~S.V. Identities of finite algebras~// Siberian Mathematical Journal. 1976. Vol.\,17, no.\,6. Pp.~992--999. \bibitem{lee-79} Vaughan-Lee~M.R. Laws in finite loops~// Algebra Universalis. 1979. Vol.\,9, no.\,3. Pp.~269--280. \bibitem{iskis-13} Isaev~I.M., Kislitsin~A.V. Identities in vector spaces and examples of finite-dimensional linear algebras having no finite basis of identities~// Algebra and Logic. 2013. Vol.\,52, no.\,4. Pp.~290--307. \bibitem{isaev-89} Isaev~I.M. Essentially non finite based varieties of algebras~// Siberian Mathematical Journal. 1989. Vol.\,30, no.\,6. Pp.~892--894. \bibitem{iskis-15} Isaev~I.M., Kislitsin~A.V. Identities of vector spaces embedded in linear algebras~// Siberian Electronic Mathematical Reports. 2015. Vol.\,12. Pp.~328--342. (In Russian). \bibitem{iskis-17} Isaev~I.M., Kislitsin~A.V. Identities in vector spaces embedded in finite associative algebras~// Journal of Mathematical Sciences. 2017. Vol.\,221, no.\,6. Pp.~849--856. \bibitem{sapir-88} Sapir~M.V. Inherently nonfinitely based finite semigroups~// Mathematics of the USSR-Sbornik. 1988. Vol.\,61, no.\,1. Pp.~155--166. \bibitem{kislitsin-18} Kislitsin~A.V. The Specht property of $L$-varieties of vector spaces over an arbitrary field~// Algebra and Logic. 2018. Vol.\,57, no.\,5. Pp.~556--566. \bibitem{drensky-21} Drensky~V.S. Weak polynomial identities and their applications~// Communications in Mathematics. 2021. Vol.\,29, no.\,2. Pp.~291--324. \bibitem{kislitsin-22-1} Kislitsin~A.V. The Specht property of $L$-varieties of vector spaces over an arbitrary field~// Second Conference of Russian Mathematical Centers (November 7--11, 2022): collection of abstracts. Moscow: Moscow University Publishing House, 2022. Pp.~112--114. \bibitem{maltsev-76} Maltsev~Yu.N. Almost commutative varieties of associative rings~// Siberian Mathematical Journal. 1976. Vol.\,17, no.\,5. Pp.~803--811. \bibitem{maltsev-96} Maltsev~Yu.N. Just non commutative varieties of operator algebras and rings with some conditions on nilpotent elements~// Tamkang Journal Mathematics. 1996. Vol.\,17, no.\,1. Pp.~473--496. \bibitem{finogenova-04} Finogenova~O.B. Varieties of associative algebras satisfying Engel identities~// Algebra and Logic. 2004. Vol.\,43, no.\,4. Pp.~271--284. \bibitem{finogenova-13} Finogenova~O.B. Almost commutative varieties of associative rings and algebras over a finite field~// Algebra and Logic. 2013. Vol.\,52, no.\,6. Pp.~484--510. \bibitem{kislitsin-18-1} Kislitsin~A.V. On nonnilpotent almost commutative $L$-varieties of vector spaces~// Siberian Mathematical Journal. 2018. Vol.\,59, no.\,3. Pp.~580--586. \bibitem{kislitsin-21} Kislitsin~A.\,V. On almost Engel $L$-varieties of vector spaces~// Siberian Electronic Mathematical Reports. 2021. Vol.\,12, no.\,2. Pp.~1705--1713. (In Russian). \bibitem{tarski-56} Tarski~A. Equationally complete rings and relation algebras~// Proceedings Koninklijke Nederlandse Akademie van Wetenschappen. 1956. Vol.\,59, no.\,1. Pp.~39--46. \bibitem{kislitsin-22} Kislitsin~A.V. Minimal nonzero $L$-varieties of vector spaces over the field~$\mathbb Z_2$~// Algebra Logika. 2022. Vol.\,61, no.\,4. Pp.~461--468. (In Russian). \bibitem{malpar-77} Maltsev~Yu.N., Parfenov~V.A. An example of a nonassociative algebra not admitting a finite basis of identities~// Siberian Mathematical Journal. 1977. Vol.\,18, no.\,6. Pp.~1420--1421. \bibitem{isaev-18} Isaev~I.M. On the join of Spechtian varieties of algebras~// Siberian Electronic Mathematical Reports. 2021. Vol.\,15. Pp.~1498--1505. (In Russian). \bibitem{dnister-93} Filippov~V.I., Kharchenko~V.K., Shestakov~I.P. Dniester notebook. 4 ed. Novosibirsk: Mathematics Institute, Russian Academy of Sciences, Siberian Branch, 1993. 73\,p. (In Russian). \bibitem{shestakov-11} Shestakov~I., Zaycev~M. Polynomial identities of finite dimensional simple algebras~// Communications in algebra. 2011. Vol.\,39, no.\,3. Pp.~929--932. \bibitem{iskis-12} Isaev~I.M., Kislitsin~A.V. An example of a simple finite-dimensional algebra with no finite basis of identities~// Doklady Mathematics. 2012. Vol.\,86, no.\,3. Pp.~774--775. \bibitem{kislitsin-15} Kislitsin~A.V. An example of a central simple commutative finite-dimensional algebra with an infinite basis of identities~// Algebra and Logic. 2015. Vol.\,54, no.\,5. Pp.~204--210. \bibitem{kislitsin-17} Kislitsin~A.V. Simple finite-dimensional algebras without finite basis of identities~// Siberian Mathematical Journal. 2017. Vol.\,58, no.\,3. Pp.~461--466. \bibitem{kislitsin-23} Kislitsin~A.V. On simple finite-dimensional algebras with infinite basis of its identities~// Mathematical Notes. 2024. Vol.~114, no.~5--6. Pp.~845--849.

Сведения о финансировании и благодарности
The author expresses deep appreciation to Prof. V.\,A.~Romankov for his attention to the paper. Supported by Russian Science Foundation, project No. 22-21-00745.
Identities of Spaces of Linear Transformations and Nonassociative Linear~Algebras
Kislitsin A. V.1
1.1Dostoevsky Omsk State University(Omsk);
Received
2024.10.14
Abstract. The paper presents the main results on multiplicative vector spaces, identities of multiplicative vector spaces and $L$-manifolds. The consequences of the obtained results for nonassociative linear algebras are also given
Keywords
multiplicative vector space, identity of multiplicative vector space, basis of identities, finitely based space, not finitely based space, $L$-manifold, essentially infinitely based manifold, strongly infinitely based manifold

References
\bibitem{kislitsin-10} Kislitsin~A.V. On identities of spaces of linear transformations over infinite field~// The News of Altai State University. 2010. No.\,1/2\,(65). Pp.~37--41. (In Russian). \bibitem{lvov-78} L'vov~I.V. Finite-dimensional algebras with infinite bases of identities~// Siberian Mathematical Journal. 1978. Vol.\,19, no.\,1. Pp.~63--69. \bibitem{razmyslov-73} Razmyslov~Yu.P. The existence of a finite basis for the identities of the matrix algebra of order two over a field of characteristic zero~// Algebra Logika. Vol.\,12, no.\,1. Pp.~83--113. \bibitem{specht-50} Specht~W. Gesetze in Ringen, I~// Mathematische Zeitschrift. 1950. Vol.~52, no.\,5. Pp.~557--589. \bibitem{kemer-87} Kemer~A.R. Finite basis property of identities of associative algebras~// Algebra i Logika. 1987. Vol.\,26, no.\,5. Pp.~362--397. \bibitem{belov-10} Belov~A.Ya. Local finite basis property and local representability of varieties of associative rings~// Izvestiya: Mathematics. 2010. Vol.\,74, no.\,1. Pp.~1--126. \bibitem{lyndon-54} Lyndon~R.C. Identities in finite algebras~// Proceedings of the American Mathematical Society. 1954. Vol.\,5, no.\,1. Pp.~8--9. \bibitem{perkins-69} Perkins~P. Bases of equational theories of semigroups~// Journal~of Algebra. 1969. Vol.\,11, no.\,2. Pp.~293--314. \bibitem{polin-76} Polin~S.V. Identities of finite algebras~// Siberian Mathematical Journal. 1976. Vol.\,17, no.\,6. Pp.~992--999. \bibitem{lee-79} Vaughan-Lee~M.R. Laws in finite loops~// Algebra Universalis. 1979. Vol.\,9, no.\,3. Pp.~269--280. \bibitem{iskis-13} Isaev~I.M., Kislitsin~A.V. Identities in vector spaces and examples of finite-dimensional linear algebras having no finite basis of identities~// Algebra and Logic. 2013. Vol.\,52, no.\,4. Pp.~290--307. \bibitem{isaev-89} Isaev~I.M. Essentially non finite based varieties of algebras~// Siberian Mathematical Journal. 1989. Vol.\,30, no.\,6. Pp.~892--894. \bibitem{iskis-15} Isaev~I.M., Kislitsin~A.V. Identities of vector spaces embedded in linear algebras~// Siberian Electronic Mathematical Reports. 2015. Vol.\,12. Pp.~328--342. (In Russian). \bibitem{iskis-17} Isaev~I.M., Kislitsin~A.V. Identities in vector spaces embedded in finite associative algebras~// Journal of Mathematical Sciences. 2017. Vol.\,221, no.\,6. Pp.~849--856. \bibitem{sapir-88} Sapir~M.V. Inherently nonfinitely based finite semigroups~// Mathematics of the USSR-Sbornik. 1988. Vol.\,61, no.\,1. Pp.~155--166. \bibitem{kislitsin-18} Kislitsin~A.V. The Specht property of $L$-varieties of vector spaces over an arbitrary field~// Algebra and Logic. 2018. Vol.\,57, no.\,5. Pp.~556--566. \bibitem{drensky-21} Drensky~V.S. Weak polynomial identities and their applications~// Communications in Mathematics. 2021. Vol.\,29, no.\,2. Pp.~291--324. \bibitem{kislitsin-22-1} Kislitsin~A.V. The Specht property of $L$-varieties of vector spaces over an arbitrary field~// Second Conference of Russian Mathematical Centers (November 7--11, 2022): collection of abstracts. Moscow: Moscow University Publishing House, 2022. Pp.~112--114. \bibitem{maltsev-76} Maltsev~Yu.N. Almost commutative varieties of associative rings~// Siberian Mathematical Journal. 1976. Vol.\,17, no.\,5. Pp.~803--811. \bibitem{maltsev-96} Maltsev~Yu.N. Just non commutative varieties of operator algebras and rings with some conditions on nilpotent elements~// Tamkang Journal Mathematics. 1996. Vol.\,17, no.\,1. Pp.~473--496. \bibitem{finogenova-04} Finogenova~O.B. Varieties of associative algebras satisfying Engel identities~// Algebra and Logic. 2004. Vol.\,43, no.\,4. Pp.~271--284. \bibitem{finogenova-13} Finogenova~O.B. Almost commutative varieties of associative rings and algebras over a finite field~// Algebra and Logic. 2013. Vol.\,52, no.\,6. Pp.~484--510. \bibitem{kislitsin-18-1} Kislitsin~A.V. On nonnilpotent almost commutative $L$-varieties of vector spaces~// Siberian Mathematical Journal. 2018. Vol.\,59, no.\,3. Pp.~580--586. \bibitem{kislitsin-21} Kislitsin~A.\,V. On almost Engel $L$-varieties of vector spaces~// Siberian Electronic Mathematical Reports. 2021. Vol.\,12, no.\,2. Pp.~1705--1713. (In Russian). \bibitem{tarski-56} Tarski~A. Equationally complete rings and relation algebras~// Proceedings Koninklijke Nederlandse Akademie van Wetenschappen. 1956. Vol.\,59, no.\,1. Pp.~39--46. \bibitem{kislitsin-22} Kislitsin~A.V. Minimal nonzero $L$-varieties of vector spaces over the field~$\mathbb Z_2$~// Algebra Logika. 2022. Vol.\,61, no.\,4. Pp.~461--468. (In Russian). \bibitem{malpar-77} Maltsev~Yu.N., Parfenov~V.A. An example of a nonassociative algebra not admitting a finite basis of identities~// Siberian Mathematical Journal. 1977. Vol.\,18, no.\,6. Pp.~1420--1421. \bibitem{isaev-18} Isaev~I.M. On the join of Spechtian varieties of algebras~// Siberian Electronic Mathematical Reports. 2021. Vol.\,15. Pp.~1498--1505. (In Russian). \bibitem{dnister-93} Filippov~V.I., Kharchenko~V.K., Shestakov~I.P. Dniester notebook. 4 ed. Novosibirsk: Mathematics Institute, Russian Academy of Sciences, Siberian Branch, 1993. 73\,p. (In Russian). \bibitem{shestakov-11} Shestakov~I., Zaycev~M. Polynomial identities of finite dimensional simple algebras~// Communications in algebra. 2011. Vol.\,39, no.\,3. Pp.~929--932. \bibitem{iskis-12} Isaev~I.M., Kislitsin~A.V. An example of a simple finite-dimensional algebra with no finite basis of identities~// Doklady Mathematics. 2012. Vol.\,86, no.\,3. Pp.~774--775. \bibitem{kislitsin-15} Kislitsin~A.V. An example of a central simple commutative finite-dimensional algebra with an infinite basis of identities~// Algebra and Logic. 2015. Vol.\,54, no.\,5. Pp.~204--210. \bibitem{kislitsin-17} Kislitsin~A.V. Simple finite-dimensional algebras without finite basis of identities~// Siberian Mathematical Journal. 2017. Vol.\,58, no.\,3. Pp.~461--466. \bibitem{kislitsin-23} Kislitsin~A.V. On simple finite-dimensional algebras with infinite basis of its identities~// Mathematical Notes. 2024. Vol.~114, no.~5--6. Pp.~845--849.

Acknowledgements
The author expresses deep appreciation to Prof. V.\,A.~Romankov for his attention to the paper. Supported by Russian Science Foundation, project No. 22-21-00745.
Сведения об авторах
Кислицын А. В.
1.1. аспирантОмский государственный университет им. Ф. М. Достоевского,
Адрес для корреспонденции: 644077, Omsk, Pr. Mira 55a, 1 корпус ОмГУ, вуд.104
About the authors
Kislitsin A. V.
1.1. Postgraduate StudentDostoevsky Omsk State University
Postal address: 644077, Omsk, Pr. Mira 55a, 1 корпус ОмГУ, вуд.104
Поиск
Свежий выпуск
Авторам