Скачать PDF
(А)нормальные экстремали левоинвариантных субфинслеровых квазиметрик на группе $G_{2,1}\times G_{2,1}$
Берестовский В. Н.1, Зубарева И. А.2
1.1Институт математики им. С.Л.~Соболева СО РАН, Новосибирск, Россия;
Дата поступления
2023.12.28
Аннотация. {В статье найдены анормальные экстремали левоинвариантных субфинслеровых квазиметрик на прямом декартовом квадрате связной двумерной некоммутативной группы Ли, где квазиметрика определяется полунормой на двумерном или трехмерном порождающем подпространстве алгебры Ли этой четырехмерной группы Ли. Установлен критерий нестрогой анормальности этих экстремалей. Решение этих задач основано на полученных ранее авторами общих результатах о порождающих подпространствах четырехмерных алгебр Ли и анормальных экстремалях левоинвариантных субфинслеровых квазиметрик на связных группах Ли с этими алгебрами Ли. В заключение рассматривается задача поиска геодезических левоинвариантной субримановой метрики на указанной группе Ли, определяемой скалярным произведением на двумерном порождающем подпространстве ее алгебры Ли.
Ключевые слова
анормальная экстремаль, группа аффинных преобразований прямой, левоинвариантная субфинслерова квазиметрика, некоммутативная двумерная группа Ли, нестрого анормальная экстремаль, порождающее подпространство алгебры Ли, субриманова геодезическая

Библиография
\bibitem{BerZub21} {\sl Берестовский~В.Н., Зубарева~И.А.} Анормальные экстремали левоинвариантных субфинслеровых квазиметрик на четырехмерных группах Ли~// Сиб. матем. журн. 2021. Т.~62, N.~3. C.~481--501. \bibitem{BerZub22} {\sl Берестовский~В.Н., Зубарева~И.А.} Анормальные экстремали левоинвариантных субфинслеровых квазиметрик на четырехмерных группах Ли с трехмерными порождающими распределениями~// Сиб. матем. журн. 2022. Т.~63, N.~4. С.~748-767. \bibitem{M63} {\sl Мубаракзянов~Г.М.} О разрешимых алгебрах Ли~// Изв. вузов. Матем. 1963. N.~1. С.~114--123. \bibitem{BR16} {\sl Biggs~R., Remsing~C.} On the Classification of Real Four-Dimensional Lie Groups~// Journal of Lie Theory. 2016. V.~26. P.~1001--1035. \bibitem{Miln76} {\sl Milnor~J.} Curvatures of left invariant metrics on Lie groups~// Adv. Math. 1976. V.~21. P.~293--329. \bibitem{BerZub20} {\sl Берестовский~В.Н., Зубарева~И.А.} ПМП, (ко)присоединенное представление и нормальные геодезические левоинвариантных (суб)финслеровых метрик на группах Ли // Чебышевский сборник. 2020. Т.~21, вып.~2. С.~43--64. \bibitem{BrMarPr86} {\sl Брычков~Ю.А., Маричев~О.И., Прудников А.П.} Таблицы неопределенных интегралов. М.: Наука, 1986. 192~с.

Сведения о финансировании и благодарности
Работа первого автора выполнена в рамках государственного задания ИМ СО РАН, проект FWNF-2022-0006. Работа второго автора выполнена в рамках государственного задания ИМ СО РАН, проект FWNF-2022-0003.
(Ab)normal extremals of left-invariant sub-Finsler quasimetrics on the group $G_{2,1}\times G_{2,1}$
N. V. Berestovskii1, Zubareva I. A.2
1.1Sobolev Institute of Mathematics of the SB RAS, Novosibirsk, Russia;
Received
2023.12.28
Abstract. In this paper, we find abnormal extremals of left-invariant sub-Finsler quasimetrics on the direct Cartesian square of the connected two-dimensional non-commutative Lie group, where the quasimetric is defined by a seminorm on the two-dimensional or three-dimensional generating subspace of the Lie algebra of this four-dimensional Lie group. A criterion for the nonstrict abnormality of these extremals is established. The solution to these problems is based on the previous general author’s results on generating subspaces of four-dimensional Lie algebras and abnormal extremals of left-invariant sub-Finsler quasimetrics on connected Lie groups with these Lie algebras. In conclusion, we consider the search problem for geodesics of a left-invariant sub-Riemannian metric on the given Lie group, defined by the scalar product on the two-dimensional generating subspace of its Lie algebra.
Keywords
abnormal extremal, group of affine transformations of the line, left-invariant sub-Finsler quasimetric, non-commutative two-dimensional Lie group, nonstrictly abnormal extremal, generating subspace of the Lie algebra, sub-Riemannian geodesic

References
\bibitem{BerZub21} {\sl Берестовский~В.Н., Зубарева~И.А.} Анормальные экстремали левоинвариантных субфинслеровых квазиметрик на четырехмерных группах Ли~// Сиб. матем. журн. 2021. Т.~62, N.~3. C.~481--501. \bibitem{BerZub22} {\sl Берестовский~В.Н., Зубарева~И.А.} Анормальные экстремали левоинвариантных субфинслеровых квазиметрик на четырехмерных группах Ли с трехмерными порождающими распределениями~// Сиб. матем. журн. 2022. Т.~63, N.~4. С.~748-767. \bibitem{M63} {\sl Мубаракзянов~Г.М.} О разрешимых алгебрах Ли~// Изв. вузов. Матем. 1963. N.~1. С.~114--123. \bibitem{BR16} {\sl Biggs~R., Remsing~C.} On the Classification of Real Four-Dimensional Lie Groups~// Journal of Lie Theory. 2016. V.~26. P.~1001--1035. \bibitem{Miln76} {\sl Milnor~J.} Curvatures of left invariant metrics on Lie groups~// Adv. Math. 1976. V.~21. P.~293--329. \bibitem{BerZub20} {\sl Берестовский~В.Н., Зубарева~И.А.} ПМП, (ко)присоединенное представление и нормальные геодезические левоинвариантных (суб)финслеровых метрик на группах Ли // Чебышевский сборник. 2020. Т.~21, вып.~2. С.~43--64. \bibitem{BrMarPr86} {\sl Брычков~Ю.А., Маричев~О.И., Прудников А.П.} Таблицы неопределенных интегралов. М.: Наука, 1986. 192~с.

Acknowledgements
Работа первого автора выполнена в рамках государственного задания ИМ СО РАН, проект FWNF-2022-0006. Работа второго автора выполнена в рамках государственного задания ИМ СО РАН, проект FWNF-2022-0003.
Сведения об авторах
Берестовский В. Н.
1.1. профессорИнститут математики им. С.Л.~Соболева СО РАН, Новосибирск, Россия
Адрес для корреспонденции:

Зубарева И. А.
About the authors
N. V. Berestovskii
1.1. ProfessorSobolev Institute of Mathematics of the SB RAS, Novosibirsk, Russia
Postal address:

Zubareva I. A.
Поиск
Свежий выпуск
Авторам